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In this contribution nuclear representations of the Dirac ring, developed over many
years, are shown to be a particular case of a theorem in algebraic geometry which at the
same time associates them with a Hodge decomposition of a Kaehler manifold. This
yields a shape that in some cases is independent of any appeal to a symmetry group.
However, because the nuclear representations are in the infinitesimal &@j4)fand

the internal space of each representation is in a Kaehler (even Calabi-Yau) manifold
K; the groug5Q(10)= SQ4) x K can give additional information. This paper develops

the very fruitful symbiosis between algebra and irreducible representaticsd0)

and covers some aspects of string theory.

KEY WORDS: Calabi-Yau manifolds; strong fields; Hodge theory; nuclear algebraic
surfaces; IR’s 05((10).

1. INTRODUCTION

Long ago Eddington and Dirac asociated nucleons and electrons with repre-
sentations of the centralizer D of the quaternion or Dirac ring. Algebraists have
also shown that these representations lie in a Kaehler manifold with a Hodge de-
composition which is associated with an abelian variety (or polynomial) that yields
a shape (see for example, Griffiths, 1969; Moonen and Zarhin, 1999). Following
Eddington’s lead the Author (de Wet, 1998) has been able to find an irreducible
representation of D with the operators of spin, isospin, and parity carried by a
nucleon, and therefore to incorporate the many-nucleon case by constructing the
tensor product. Odd A nuclei have an internal Kaehler (even Calabi-Yau) manifold
and as expected exhibit not only mirror symmetry but decompose beautifully into
Hodge classes from which nuclear shapes may be determined.

Although algebraists prefer not to work with matrix representations much may
be gained from this approach. One thinks of Pauli matriceStbrand representa-
tions of quaternions, given for example by Eddington (1953), which were employed
by de Wet (1973, 1998) to find the well-known angular momentum operators for a
coupled system o protons andN neutrons which together with conjugate parity
operatorsr in (2.4) below constitute the six generators@f4). However, these
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relations also follow from th&,-grading of the algebra as shown by Lawson and
Michelsohn (1989), so there is an intimate connection between nuclear algebraic
geometry and6((10), because the spinorial representations of D{4) lie in a
Calabi-Yau spacK . In this contribution the symbiosis will be used to analyse nu-
clear structure. For example, Fig. 1 shows strings of electric flux lines binding the
rotating and spinning nucleons e and®Li. These are equivalent to geodesics
on the nuclear manifolds computed by the matrix representations introduced in
Section 2. In contrast Fig. 2 is an idealized quintic hypersurface (or 2-brane) in 4-
space which also carries a string (1-branefldrand does not depend on a matrix
representation. A four-dimensional view of this three-dimensional section appears
in Greene (1999) while Fig. 2 is taken from a program written by Hanson (1994).
Unfortunately there is not a unique relationship between algebraic varieties,
or hypersurfaces, and the associated Hodge decomposition, because a hypersurface
is generated by the poles, or singularities at the origin which are absent in the case
of the stable nucleiBe, 1C, *C (and their mirror partners) investigated so far
by the methods of Section 2 (where a Kaehler metric will be found). This metric
is twisted in the case of the unstable nucléusand has a pole of Order 5 at
the origin (see Fig. 4) which following Griffiths (1969) will generate a quintic
in a four-dimensional complex projective space. The twisted 2-branes meeting in
a black hole at the origin of Fig. 2 could be the source of elementary particles
according to Greenet al. (1995).
The contact with nuclear theory is provided by the labeling of a partition
A = A1+ A2 + A3 + A4 Of @ nuclear canonical ensemble that yields the states:

A1 = number of neutrons with positive spin and negative parity,
A2 = number of neutrons with negative spin and positive parity,
A3 = number of protons with negative spin and negative parity,
A4 = number of protons with positive spin and positive parity.

In this way a row of an irreducible representation is labeled\pyd [A1A2A3)4].

The spin and parity are respectively

S= (A= 202+ 43), P=5(200+ 70— A) w.1)

and it is possible to find the eigenvalues and hence wave functions and metric
of a Hodge decomposition of an irreducible three-fd@py, in the centralizer
D, by direct substitution into (2.7a) with the identificatiofis= 2is, 7, = 2ip.
The fact that these eigenvalues agree precisely, up to sign, with those of a matrix
representation justifies the canonical labeling. However, to find the signs of the
states labeling the rows @fj;; an irreducible matrix representation of a subspace
« is mandatory.

A representation of D has, by construction, a spin structure, and therefore
according to Lawson and Michelsohn (1989) has zero first Chern class. Thus the
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Fig. 2. Hanson quintic hypersurface.

internal Kaehler space is also a Calabi-Yau spécend it is possible to find a
decompositionM* x K of 10-dimensional space-time for each oddiucleus.
One may say that the spinorial representationS@fL0) describe the particles
governed by representations $)4) that lie in K. A resume’ of the nuclear
representations 8Q4) follows in the next section.

2. NUCLEAR REPRESENTATIONS OF O(4)

We begin with an irreducible self-representation

1 .
Z‘I’ = (IE4V1 + E23W2 + E14W3 + EgsWa)e (2.1)
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of the centralizer D of the Dirac ring where EddingtoBEshumbers are related to
the Dirac matrices by

¥ =iEo, Eu=EyuEy=-E,, E =-1 pu<v=1..5

and the commuting operatoEss, E14, andEgs respectively are independent rota-
tions in 3-space, 4-space, and isospace that correspond to the girity =, and
chargeT; carried by a single-nucleon. The parametss\s, W, are half-angles

of rotation ande is a primitive idempotentE, is the unit matrix. To see hol,4

is related to parity we notice that a rotation througlaboutt will send x to —x
without inverting time but instead changing to a left-handed coordinate system.
The operators of the centralizer obey the multiplication table:

Exs Eis  Eos

Eos i2 iEgs iE14
E]_4 iEo5 i 2 iE23
Eos iEia  iEpz i

A many-nucleon representation is found in the enveloping algélfyd of the
Dirac ring by constructing tensor products of (2.1) with itself. The basis elements
are the 4 x 4* matrices

2.2)

E,=E® - ®E®E,QE® -®F (2.2a)

with E,, inthe 1st position. The elemerf, , E{ ;") commute, and\(y) is found
to have the following generators, or de Broglie operators

1
FEA)zé(E3V+E§v+.--+E§U); v=1,...,5 (2.3a)

o) =[P, W] = %(Eiv +--+Ep) mw<v=1..,5 (23b)

Ul()A) = EOU R Q EOV = E(])-UE(Z)U E(ﬁ,;
(2.3¢)
n =0 =ELEZ - EP
Then by using the & 4 matrix representations &3, E14, andEgs one can find
fibers consisting of all those states that have the same quantum numbers of spin,
parity, and charge. The fiber bundle space has a beautiful de Rham decomposition
intoisobaric multiplets each of which is characterized by the matrix representations

06i=En® T+ " ®Ep, m=En®'Ti - "T®Ep, i=1,2,3
(2.4)

wherePT;, NI'; are P + 1)-, (N + 1)-dimensional Lie operators &Q(3) and
Ep, En are P + 1)-, (N + 1)-dimensional unit matrices (cf. de Wet, 1973). The
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operatofo; may be recognized as the well-known angular momentum matrix for
a coupled system d® protons and\ neutrons and; is a parity operator.

In factai, 7 are the generators &04) and the fibration introduces a Yang-
Mills field with connections on a fiber bundle (cf. for example, Schwarz, 1991,
Introduction).

The irreducible representations or minimal left ideals\¢§ ) are

A

wherePy;; is a projection operator
Pog = i A(AUT 057U U0" + 05 Wit05 U Ve
- A A
iAMDYV YR VI YR en (2.60)

satisfying
Py = Pogva v vy’ (2.6b)

whereea = e® - - - ® eis idempotent so that (2.6b) has the form (2.1) in config-
uration space. Examination of (2.6a) shows that, in view of the canonical labeling
scheme, the first two terms characterize a given nucleus while the other pair char-
acterize its mirrorT — —T). Furthermore, if f1121314] is characterized by,
7o its partner kA1 2423] Will be characterized by-oy, —mo S0 as will be confirmed
Chirard = —Chuiiiarg] are both acceptable. In this way there is a sign ambigu-
ity that can be settled only by comparison with the eigenvalues of an irreducible
subspace of Cpy.

Now by virtue of the isomorphism between Clifford multiplication and the
exterior product (Lawson and Michelsohn, 1989)

Coy=i") (Bl ERER™ - ERER™™ . ENY  (@7)

is a threeform in the centralizer D. Here there is summation of allNhe=
Al/(A1!12!03!1441) combinations of the basis elements and by (2.5) a matrix repre-
sentation of the many nucleon problem will have the row€gf labelled by the
states 1]. However, a Hodge decomposition of the central equation (2.7) may be
obtained without any appeal to matrices and also the eigenvalues that determine
the metric may be found up to sign from (1.1). The fact that signs can be chosen
to agree exactly with a matrix representation based on (2.4) for the light nuclei
up to 1'C justifies the canonical labeling adopted. In the cas&6fthere is a

tiny spin mutation of 1/450 in two paired states which suggests a reformulation
of the Lie commutation relations for these states as employed in quantum group
theory. Santilli (1992) called these algebras Lie-Admissible. They ind®@at&0)
symmetry breaking.
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To find the Hodge decomposition of (2.7) we write it

Cra) = iMog?a o T = ) Mo my Ty (2.7a)
A

where [A] = [A1A2A3A 4] is the ground state and
00 =201 = (E)g+ -+ Ef) =28, mo=2m=(E+ - +Ef)=2p
To=2r¥Y = (Ef+--- + EQ) =i(Z — N) = 2T; (2.8)
The summation contains all those terms arising from repeated indice €3 B,
EXEX,, EXELs, andEX,EX; that yield a single term according to (2.2) and (2.2a).
An elementary application of (2.7a) is
00To = P(ELEbs) + im0 (2.9a)

whereP signifies summation over th&! /(A — n)! permutations of the@ genera-
tors in the bracket. Then

Cia_z101 = | AP (EbzEL) = i 20T, — i o) (2.9b)
andifA=3,Z=1,T,=i(Z - N)=—i
Cri101) = (00 + 7o) (2.9¢)

which characterizes the ground state’df The ground state ofHe is obtained
by interchangingr, < 7, in (2.9b) to get

Cia—20111= 1A 200 To — i 05)
sothatifA=3,Z =2, T, =i, we find the mirror nucleus
Cu101) = (90 — 70) (2.9d)

which is manifestlyCP-invariant becaus&, — — T, is accompanied by — —,.
From (2.4) we find the dual complex spaces

X XT “11=v2) o
Op = XT ) TTo = X ) X == \/z 1 —\/E (2.10)
o | v2 | -1

which lie in a Kaehler manifold known to have a Hodge decomposition (cf. for ex-
ample, Griffiths and Harris, 1978). Thus following Kobayashi and Nomizu (1969,
Ch. 9) we setrg equal to the subspace®° of (1,0) forms g, equal to the subspace
A%, thenCyy1011 is the Hodge decompositiod 1 + HOL,

The eigenvalues ofy, + n,) found from the labeling (1.1) aref2i; 2i; —2i;
2i; —2i; 2i] corresponding to the states

([0210]; [2001]; [2010]; [0204]; [1110]; [1101])
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These are in one-to-one correspondence with the matrix representation (2.10) but
the latter specifies the sets

(2i;=2i;2), —(2;-2;2)
In general we will find a decomposition intp,(q) forms whenever the threeform
0070 Tp CONtains terms with the same indices (as shown by (2.9a) wheadses
from all the productsEL,E},). There will be coupling constants that count the
number of times an irreducible representation occurs. The process beginning with
(2.9) may be continued by “adding” one nucleon at a time, i.e., by multiplying
by 4, o, To Until Az + Az + As = A— A; and in this way we find thé = 9
operators

1°P (EjsE3E 5 E0sEgsEgs)

"L Ciasos) = (3131
1
=5 [34(00 + 70) + (007§ + 0fmo) + (0§ +75)]  (2.114)
1
gCZC[gogg] = 6[34(00 — 7o) + 9(0‘715 — 0'0271'0) + (O‘o — 7'[3)] (2.11b)

1
B: C[3123] = —5[34(0'0 + 7'[0) + (0'07'[5 + Ugj'[o) + (Ug + JTS)] (212&)

1
°Be:Ciao13 = —5[34(00 — 7o) + (00§ — 0émo) + (0§ — 75)]  (2.12b)

which areCP-invariant and may be expressed in the matrix form (2.10) by means
of (2.4). The representations of mirror nuclei are identical up to an equivalence
transformation of rows and columns.

Equations (2.11) and (2.12) are in terms of the harmonics

HLO 4+ HOl = (00 + m0); H?14+ H1?2 = (002710 + 0'07[02);
H3,0+ H0,3 — (0_03 +ng) (213)

which is a Hodge decomposition of the cohomology of the Kaehler manifold con-
sisting of classes that are closed but not exact as confirmed by Kobayashi and
Nomizu who show that the exterior derivative of an odd form is even. Thus the
observation that (2.11) and (2.12) contain no even forms proves that all classes
are closed. Apart from the contribution of Griffiths (1969); Grextral. (1988,
Section 16.3.2) show that the harmonics (2.13) may characterize a quintic hyper-
surface illustrated by Fig. 2, although this need not always be the case as will
become clear when a metric is introduced.

We will need to exponentiate an irreducible subspacef the matrix re-
presentation o€;,;. It has the structure (2.10) whekeis now a real symmetric
p x p matrix Awith coordinate& = jt and there is a one-to-one correspondence
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between the eigenvalueg and the stateA]x = [A1A24314]k. The exponential
formula (de Wet, 1996) states that

n n

Fr(u) cosyt Fi(u) sinyt
et = —_— T 2.14
b2 TFi T A R 149

where
F(w) = n(® +1)(1? +y3) - (n+v5) =0
Fo() = F(w)/i,  F() = F()/(0* +%0), Fi()F(w) =0 (2.14a)
and
i i F(ue)
1 F(iv)

is idempotent. Thus (2.14) follows by differentiatingtat 0 becausé ", Ky (1)
is a decomposition of unity. Alse*! is orthogonal and unimodular because

Ki(n) = (2.15)

(@) = eiti )t = 1 = et = Det gt (2.16)

Inthisway (2.14) isanirreducible representatio8af4) that generates an internal
nuclear space that is Calabi-Yau. A metric, intimately associated with the wave
function, is found by writing (2.14)

e = Zy(cost) + Zy(sint) = Z 4
= 4o 1 = 7. Zo
and using the formula of Wong (1967)
dT dT’
ds? =Tr (2.17)

A+TTH@A+TTD

where

n

i (Fy()/ 1) tanpct
k;Z EL ) (2.17a)

T=227"=-TT=p

n
TT = ) Ki(w)tar? ut (2.17b)
k=1,2

HereTT anddTT are conjugate transposesiofanddT and (2.17) reduces to the
flat measure carried by a torus, namely

n
ds’ = ) dzdz, z = int (2.18)
k=1,2
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which is the Kaehler condition that the metric approximate the Euclidean metric
to Order 2 at each point (Griffiths and Harris, 1978, Ch. 0.7).
However, (2.14a) depends on a translation to a normal canonical form

(L y2;- .5 v0)s n<p (2.19)

where §», ..., yn) are all positive. If this condition is not met we must add an
angular momentuny, equal to the greatest negativeand then divide by =

(» + y0), which may be absorbed frand does not change the geodesics although
there is a frequency change in the wave functigfisThe effect of the translation

is to introduce a “twist’e*! &7t that multiplies (2.17a) by t&nt and leads to a
distorted metric

ds’ = 3 g(ndg(-nd) d(nt) d(-nt)
k

tar? yot seé wt _ =
- Xk: (1 + tar? yot tar? )2 dz dz = Xk: O dacdzc (2.20)
which is independent gi because of the idempotent factor (2.15) and reduces to
(2.18) when tanypt = 1. Herek = pt, k = —t are respectively coordinates of
X = A, —XT - —Ain (2.10), whilei it are the coordinates gf.

Finally because by (2.14a),kaplane is annihilated by, its orientation is
determined by the remaining planes. In this way a spinor field corresponding to
the state ]]x and propagated only around the secti@will return to its original
value that is precisely the condition given by Gresral. (1988, Section 15.1.3)
for a Calabi-Yau space to ha®)3) holonomy.

3. NUCLEAR SHAPES

In this section we will use (2.14) to determine the nuclear shapes of Fig. 1
by finding the geodesics (or strings according to Gretea., 1988, Ch. 1) on the
manifolds of Li-9, Be-9, and their mirror partners. In the case of Be-9

=~

K

(3.1)

=
Il
~| =~

—-A

where the real bisymmetric matri, with normalized eigenvalues

(0;1/2;1;5/2;5) (3.2)
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has been obtained by interchanging rows and columns. There is no twist so the
metric (2.18) is flat. Preferred central states are chosen with elements

3 9
Az =—- Aag = . 3.3)

After evaluating A™]43, [A™]44 form = 3, 5, 7, Equation (2.14) yielded the wave
functions

X3 = 1/16(—sint/2 + sint + 5sin%/2 — 5sin §) (3.4a)
X4 = X3(2r —t) = 1/16(—sint/2 — sint + 5sin8/2+ 5sing) (3.4b)

and it may readily be confirmed that at= 0, dX/dt = —3/4, dX/dt = 9/4 in
agreement with (3.3). Becau3g = X3(2r — t) the wave functions are comple-
mentary and consequently generate closed geodesics in 3-space (cf. Kobayashi
and Nomizu, 1969, Ch. 9). They may be thought of as electric flux lines enclosing
the rotating and spinning nucleons as depicted in Fig. 1 (cf. tHooft, 1979). How-
ever, because the nucleus is pulsating and rotating, nucleons sketched in the figure
will move as the geodesic proceeds round them so only average positions can be
shown.

Although the complementary wave functions are not given, Fig. 3 shows the
geodesics oA°C (to the same scale). There are two nucleons outside of a central
core and the axis of rotation is perpendicular to the figure. There is also a twisted
metric but no singularities at the origi*Be and'*C are dipoles.

Turning now to°Li, the central matrix elements of preferred states are

31
=2 Ag=-1 (3.5)

Fig. 3. Geodesics on C-13.
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and the normalized eigenvaluesAfare

15 435
._._.1._._._. i

(0121 61 13! 2! 215> (3 6)
with a twist ofyy = 5/3. After evaluating A™]44, [A™]4s5, form = 3,5, 7,..., 13,
Equation (2.14) yielded the complementary wave functions

X4 = ! sin5t 95int +5$in5t+3Sint+1sin4t+33in3t
*T 647 3 2 6 ' 2 273 2

5
+15 sinét + 225sin Ei) (3.7a)

1 5 ot .5t 3 .
X5 = +X4(6mr — t) = alsm§t<9 smé + 5$|nE —3 sint

1 . 4 3 5
—3 singt + 35in§t +15 sinét —225sin 5) (3.7b)

which are also plotted to approximately the same scale in Fig. 1. Agais-d1,
dX,/dt, dXs/dt satisfy (3.5).
The Lithium nucleus rotates into itself aftee= 6, and Fig. 4 shows the
twisted measure (derived from (2.20)) namely
tar?(5/3)t se¢(5/6)t 38
9 = LT tar(5/3)t tark(5/6)1)2 (3:8)
onthe preferred plang = /2 = 5/6 over this range. The troughs correspond to
the small metric of Fig. 2, as derived in the Appendix, and apart from oscillations
to the flat metriag,i = 1, corresponding to tagt =1, there are five singularities
at the origin which occur when sjat = tanyet =0, i.e., whert = ¥, 2 37,

Zr 2t < 6. These define a pole of order 5, that may be reduced to a minimal

8 1
6
1 N
Twisted Metric
’ —— Flat Metric

25 5 7.5 10 12.5 15 17.% Hanson Metric

Fig. 4. Nuclear metrics.
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Fig. 5. Hanson metric.

ordern(q) = 4, which Griffiths (1969, Table 1) demonstrates can generate at least
a quintic algebraic variety in the complex projective spade*. Moreover, the
Hodge decomposition must be associated with a three-f6fm

Because of the absence of singularities in the Hanson metric (shown in Fig. 5)
Fig. 2 can only be regarded as a first approximation to the manifdldiolin fact
there are 101 possible quintic hypersurfaces and one must seek that one with
the metric (3.8). The hypersurface considered in the Appendix is described by
two parameter§, t. Thus to find that part defining a geodesic, or one-parameter
subgroup, we sét = 0,n = 5 to get Fig. 5. The metric is tiny.

APPENDIX
Hanson (1994) looked at a three-dimensional section
Z/+z75=1 (AL)
of the abelian variety
Z+z+73+27,=1

in complex projective 4-spade. A two-dimensional solution of (A1) is

z1(t, & ki) = sk, nua(t, £)7/"

25(t, &, ko) = s(ka, N)ua(t, £)7/"

where

Un(t,£) = H(eXDE + 1)+ expl-t — 1)

lt,€) = 3 (exDE + 1) — exp(-£ — 1), A2)
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and
s(k, n) = exp(2rik/n)

is a phase factor consisting of thél root of unity for the integers & k < (n — 1).
Then

2 2.4 au au 2 2.1 .
dZ = s(ky, n) (Hu{ ) (8_tl dt+ H—;dé) =9(kq, n)ﬁuln ux(—dt+idg)

dz dz; = %(Ulal)%71U2[jz(dt2 + d%‘z)
2 2. .
dz = s(k, n)ﬁuzn uy(dt — idg)

N
dzdz, = F(UZUZ)H_lulul(dtz + dg?)

and the Fubini-study metric given by Kobayashi and Nomizu (1969, Ch. 9) reads
42 — dz dz; + dzdz — (z dzz - 22921)(21 dz, — z,dz;)
(14 2171 + 2o2,)?
A(Ualn)> 7 + (Ual)* 7 — 1)(dE + d&?)
(U (Ua)] (L4 (U) + (Ualn) )
= G(dt2 + dg?) (A3)

where from (A2)

_ 1 _ 1
(uruy) = E(cosh Z +cos2), (uup) = é(cosh Z—cos2), ui+ui=1

Equation (A3) is plotted in Fig. 5 with = 0, andn = 5.
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